
Periodic motion 
 Oscillations 

Equilibrium 
position 



Any kinds of motion repeat themselves over and over: the vibration of a quartz 
crystal in a watch, the swinging pendulum of a grandfather clock, the sound 
vibrations produced by a clarinet or an organ pipe, and the back-and-forth 
motion of the pistons in a car engine.  
=> This kind of motion, is called periodic motion or oscillation.  

Understanding periodic motion will be essential for our later study of waves, 
sound, alternating electric currents, and light. 

A body that undergoes periodic motion always has a stable equilibrium 
position. 
When it is moved away from this position and released, a force or 
torque comes into play to pull it back toward equilibrium (restoring 
force/torque).  
But by the time it gets there, it has picked up some kinetic energy, so it 
overshoots, stopping somewhere on the other side, and is again pulled 
back toward equilibrium.  
 
Picture a ball rolling back and forth in a round bowl or a pendulum that 
swings back and forth past its straight-down position. 

Equilibrium 
position 



Em ↔ Eel 
 

LI2/2 ↔ Q2/(2C) 

m ↔ L 

k ↔ 1/C 

K ↔ U 
 

mv2 /2 ↔ kx2/2 

Mechanic SHM oscillator Electrical oscillator LC 

Continuous conversion 



DESCRIBING OSCILLATIONS 

When the body is displaced from its  equilibrium 
position at x=0 the spring exerts a restoring force 
back toward the equilibrium position. 

⇒ Oscillation  
= periodic motion around the equilibrium 

Amplitude, Period, Frequency, and Angular Frequency 

The amplitude A,  of the motion = is the maximum magnitude of displacement from equilibrium 
<=>  A = maximum value of IxI. It is always positive.   [A] =m 
 
 A complete vibration, or cycle, is one complete round trip—say, from A to –A and back 
 to A, or from O to A, back through O to –A and back to O.  The motion from one side to 
 the other (say, -A to A) is a half-cycle, not a whole cycle. 

The period  T = the time for one cycle. It is always positive. 
    [T] =s, sometimes expressed as “seconds per cycle.” 

The frequency  f = the number of cycles in a unit of time. It is always positive. 
  [f] = the hertz: 1 hertz = 1 Hz = 1 cycle>s = 1 s-1 f =1/T 



The angular frequency ω is 2π times the frequency: 
22 f
T
πω π= = [ω]=rad/s 

Example: 

This is a very rapid vibration, with large f and ω and 
small T. A slow vibration has small ƒ and ω and large T. 

thyroid sonography 



LEARNING GOALS 
 
By studying this chapter, you will learn: 
 
• How to describe oscillations in terms of amplitude, period, frequency,  and angular frequency. 

• How to do calculations with simple harmonic motion, an important type of oscillation. 

• How to use energy concepts to analyze simple harmonic motion. 

• How to apply the ideas of simple harmonic motion to different physical situations. 

• What determines how rapidly an oscillation dies out. 

• How a driving force applied to an oscillator at the right frequency can cause a very large response, 
or resonance. 

Plan: 
• Simple Harmonic Motion (SHM): ideal case, no dissipation 
• Damped oscillations: realistic case, dissipation 
• Forced Oscillations and resonance: periodic force on damped oscillator to keep A=ct 

 
• Electric analogy: the RLC oscillator  



(I) The simple harmonic motion  (SHM) 
The simplest kind of oscillation occurs when the restoring force Fx  is directly proportional to the 
displacement from equilibrium x. 

Hooke’s law 

The acceleration in  SHM :  

The minus sign means the acceleration and displacement always have opposite signs. 
The acceleration is not constant in time. 
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Frequency and period:  

 
The period T and frequency f of simple harmonic motion are completely determined by the mass 
m and the force constant k.  
 
In simple harmonic motion the period and frequency do not depend on the amplitude A. 

notation 



Displacement, Velocity, and Acceleration in SHM 

The solution of the differential equation of the SHM is: 

The displacement x is a periodic function of time, as expected for SHM. 

The constant φ  is called the phase angle. It tells us at what point 
in the cycle the motion was at t=0 (equivalent to where around 
the circle the point Q was at t=0 –see next slide.  



Relating uniform circular motion and simple harmonic motion. 
Phasor representation. 

(a) Relating uniform circular motion and simple harmonic motion.  
(b) The ball’s shadow moves exactly like a body oscillating on an ideal spring. 

Simple harmonic motion is the projection of uniform circular motion onto a diameter. 

At time t the vector OQ from the origin to the reference point Q makes an angle θ with the positive x-
axis. As the point Q moves around the reference circle with constant angular speed the vector OQ 
rotates with the same angular speed ω. Such a rotating vector is called a phasor.  



Velocity, and Acceleration in SHM  
 
functions of time for a harmonic oscillator  
=> by taking derivatives of  x(t) with respect to time: 

Oscillates between vmax=+ ω A and vmin=-ωA 

Oscillates between amax=+ ω2 A and amin=-ω 2 A 

Obs: 

max

max
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( ) 0

x

x
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Energy in Simple Harmonic Motion 
We can learn even more about simple harmonic motion by using energy considerations. 

The kinetic energy in the SHM: 21
2 xK mv=

The potential energy in the SHM: 21
2

U kx=

2k
m

ω=

The total energy E=K+U 

E will be constant in time (conserved) 
 
A constant in time 

Elastic force = conservative force 
=> Energy conservation, continuous 
conversion from K to U 



Application 1. The Simple Pendulum 
A simple pendulum is an idealized model consisting of a point mass 
suspended by a massless, unstretchable string. When the point mass is 
pulled to one side of its straight-down equilibrium position and  
released, it oscillates about the equilibrium position. 

For small θ, sin θ= θ 

The restoring force is the tangential component 
of the net force: 

Is of elastic force type F=-kx 

T depends on L and g nut not on m 
Pendulum clock beats second on Earth but not on Moon 



Application 2. Vibrations of Molecules/atoms in solids 
When two atoms are separated from each other by a few atomic diameters, they can 
exert attractive forces on each other. But if the atoms are so close to each other that 
their electron shells overlap, the forces between the atoms are repulsive. Between these 
limits, there can be an equilibrium separation distance at which two atoms form a 
molecule. If these atoms are displaced slightly from equilibrium, they will oscillate. 

U(r) =-k(r-r0)2/2 =>  F(r) = - dU/dr =- k(r-r0)  
 => restoring force => oscillation around equilibrium r=r0 

Extrapolation:  
vibration of atoms in solids at finite 
temperature.  
See next term quantum mechanics 





(II) Damped Oscillations 

The idealized oscillating systems (SHM) are frictionless. There are no nonconservative forces, the 
total mechanical energy is constant, and a system set into motion continues oscillating forever with 
no decrease in amplitude. 

Real-world systems always have some dissipative forces: viscosity, friction… 
 => dissipation, oscillations die out with time unless we replace the dissipated mechanical energy. 
A mechanical pendulum clock continues to run because potential energy stored in the spring or a 
hanging weight system replaces the mechanical energy lost due to friction in the pivot and the 
gears.  



The simplest case to analyze in detail is a simple harmonic oscillator with a frictional damping force 
that is directly proportional to the velocity of the oscillating body. This behavior occurs in friction 
involving viscous fluid flow, such as in shock absorbers or sliding between oil-lubricated surfaces. 

We then have an additional force on the body due to friction:  Fx=-bvx   
 
where  
 
is the velocity and b is a constant that describes the strength of the damping force.  
The negative sign shows that the force is always opposite in direction to the velocity.  

x
dxv
dt

=

The net force on the body will be: 

And the Newton’s second law: 

2nd order differential equation of damped oscillator 

If the damping force is relatively 
small, the motion is described by: 

The decrease in amplitude caused by dissipative forces is called damping, and the corresponding 
motion is called damped oscillation.  



The angular frequency ω’ of oscillation 

Graph of displacement versus time for an 
oscillator with little damping and with phase 
angle Φ = 0. The curves are for two values of 
the damping constant b. 

Obs: 

( /2 )( ) b m t tA t Ae Ae δ− −= =

is not constant but exponentially decaying in time 
larger b (or δ), larger decay 



If b > 𝒌𝒌𝒌𝒌 the condition is called overdamping.  
Again there is no oscillation, but the system returns to equilibrium more slowly than with 
critical damping.  
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the condition is called critical damping. The 
system no longer oscillates but returns to its 
equilibrium position without oscillation 
when it is displaced and released. 

For the overdamped case the solutions of 2nd order diff. eq of damped oscillator have the form: 

If b < 𝒌𝒌𝒌𝒌 than the critical value, the condition is called underdamping. 
The system oscillates with steadily decreasing amplitude. 

where C1 and C2 are constants that depend on the 
initial conditions and a1 and a2 are constants 
determined by m, k, and b. 

1. 

2. 

3. 

Damping regimes 



Energy in Damped Oscillations 

In damped oscillations the damping force is nonconservative; the mechanical energy of the system is 
not constant but decreases continuously, approaching zero after a long time. To derive an expression 
for the rate of change of energy, we first write an expression for the total mechanical energy E at any 
instant: 

To find the rate of change of this quantity, we take its time derivative: 

Is always negative=> as the body moves, the energy 
decreases, though not at a uniform rate. 

The term: 

Is the rate at which the damping force does (negative) work on the system (that is, the damping 
power). This equals the rate of change of the total mechanical energy of the system. 

Similar behavior occurs in electric circuits containing inductance L, capacitance C, and resistance R. 
There is a natural frequency of oscillation, and the resistance plays the role of the damping constant b. 



Important physical quantities describing damped oscillations 

Damping logarithmic decrement 2( )ln ln
( ) 2

damping parameter
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= = = =
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=

Relaxation time = the time after which the amplitude decays e times 
  e=2,71828 the basis of natural logarithms 
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e

τ τ
δ

+ = ⇒ =

The quality factor Q = defines the speed of energy loss due to dissipation  
 a measure of the relationship between stored energy and rate of energy dissipation 
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Characteristic for any type of damped oscillatory phenomena, independently on their nature: 
mechanical, electrical, electromagnetic. (see later the RLC oscillator). 



(III) Forced Oscillations and resonance 

A damped oscillator left to itself will eventually stop moving altogether. But we can maintain a 
constant-amplitude oscillation by applying a force that varies with time in a periodic or cyclic way, 
with a definite period and frequency. 

If we apply a periodically varying driving force with angular frequency ωd to a damped 
harmonic oscillator, the motion that results is called a forced oscillation or a driven oscillation. 

In a forced oscillation,  the angular frequency with which the mass oscillates is equal to the 
driving angular frequency  ωd .  
It is different from the motion that occurs when the system is simply displaced from equilibrium 
and then left alone, in which case the system oscillates with a natural angular frequency ω’ 
determined by m, k, and b.  
 
The amplitude of oscillations is constant but depends on ωd/ ω’. 

Damped Oscillation with a Periodic Driving Force 



If we apply a periodic force (e.g. sinusoidal) to a damped oscillator:  
max( ) cos dF t F tω=

If we vary the frequency of the driving force, the amplitude of the 
resulting forced oscillation varies in an interesting way: 

ωd/ ω’=1 

the amplitude goes through a 
sharp peak as the driving 
angular frequency nears the 
natural oscillation angular 
frequency ω’ => RESONANCE 
 
When the damping is 
increased (larger b), the peak 
becomes broader and smaller 
in height and shifts toward 
lower frequencies. 

2 2 2

x max max2 2 2ma cos cosx d d
d x d x dx d xF m kx bv F t m kx b F t m
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ω ω= = => − − − = => − − − =∑
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From the second principle of dynamics: 

The differential equation of forced oscillator 



Solving the 2nd order differential equation, one gets: ( ) cos( )dx t A tω φ= +

with 
2 2

0

tan
d

d

b
m
ω

φ
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−



Relationship with the quality factor Q 

QA>QB>>QC 

Q=∞ if b=0 no damping 
 => infinite A of oscillations 

The fact that there is an amplitude peak at driving 
frequencies close to the natural 
frequency of the system is called resonance. 



For low damping forced oscillators close to resonance, the amplitude of oscillations becomes 
extremely large  (Q=∞ if b=0 no damping  => infinite amplitude A of oscillations). 

Resonance and Its Consequences 

Tuning radio/TV stations 
 Resonance also occurs in electric circuits (see 2end term) a tuned circuit in a radio or 
 television receiver responds strongly to waves having frequencies near its resonant f
 requency, and this fact is used to select a particular station and reject the others. 

Destructive effects:  
 if Aresonance> plasticity limit => mechanical fracture of oscillators. 
 or in electric circuits the current may attain dangerously large values 
 
A company of soldiers once destroyed a bridge by marching across it in step; the frequency of their 
steps was close to a natural vibration frequency of the bridge, and the resulting oscillation had large 
enough amplitude to tear the bridge apart. Ever since, marching soldiers have been ordered to break 
step before crossing a bridge. Some years ago, vibrations of the engines of a particular airplane had just 
the right frequency to resonate with the natural frequencies of its wings. Large oscillations built up, and 
occasionally the wings fell off. 

Positive effects: at resonance the transfer of energy is maximum. 
 see other applications when studying waves 



Discussion about the phase 
2 2

0

tan d

d

b
m

ωφ
ω ω

 =   − (see movie). 

1. Small ωd and ωd<< ω0  => tan φ →0 ; φ →0 the phase angle tens to zero 
 

The low frequency response is in phase with the driving force. The oscillator, through its elastic 
constant k controls the response , the body is displaced back and forth by the external force 
acting against the elastic force. 

2. ωd= ω0  => tan φ →∞ ; φ =π/2 ;   
  
 the force is phase-shifted with respect to the elongation with π/2  
 => in phase with the velocity.  In order to have a maximum power transfer the force has 
 to be maximum when the velocity of the oscillator is maximum. 

3. ωd> ω0  => tan φ →0 ; φ =π ; => A→Fmax/mωd
2  

 
 the amplitude decays with ωd , the response of the oscillator is controlled by the inertia of the  
 system (m) and m respond as a free object being displaced back and forth by the force  
 => the elongation is always delayed (in antiphase) with respect to the driving force.  



Some videos about forced oscillations 



MECHANIC AND ELECTROMAGNETIC OSCILLATIONS 

Em ↔ Eel 
 

LI2/2 ↔ q2/(2C) 

m ↔ L 

k ↔ 1/C 

K ↔ U 
 

mv2 /2 ↔ kx2/2 

Mechanic SHM oscillator Electrical oscillator LC 

Continuous conversion 

Realistic case 
Damped oscillator 
Dissipation b:  F =-bv 

Damped RLC oscillator 
Dissipation R ↔ b:  dissipation power =-RI 

Goal: study the  



The SHO constitutes an example of periodical motion of major importance because it serves as 
exact of approximate model for many problems of classic and quantum physics. 

Based on analogy with SHM, we are going to analyze the variation in time of the electric charge in 
an RLC serial circuit.  

i 
We assume that at instant t=0 the 
capacitor C Has been charged with the 
total amount of charge q0 (e.g. using a 
source Vc0, then the system is let free. 

Vc0 

We do not have any 
source in the circuit, so 
the sum of voltages on the 
closed loop (on the R, L, C) 
has to be zero. 

0 with 

C

C R L L

R

qV
C
diV V V V L
dt

V iR

 =

+ + = =


=




0 with    di q dqL Ri i
dt C dt

=> + + = =
2

2 0d q dq qL R
dt dt C

+ + =

2

2 0d q R dq q
dt L dt LC

+ + =
The 2nd order differential equation for the RLC serial 
circuit 

This equation has to be compared to the 2nd order equation for the forced oscillator  

2

2 0d x b dx k x
dt m dt m

+ + = From term to term comparison, one can make the 
following analogy: 

Mechanic Electromagnetic 

x –elongation q –electric charge 

b – damping constant R –electric resistance 

m – mas (inertia to movement) L –inductance 

k –elastic constant 1/C –inverse electric capacity 



Mechanic Electromagnetic 

x –elongation q –electric charge 

b – damping constant (mechanic 
dissipation) 

R –electric resistance (electric dissipation) 

m – mass (inertia to changes of 
velocity) 

L –inductance  
(opposes/inertia to changes of current) 

k –elastic constant 1/C –inverse electric capacity 

v=dx/dt i=dq/dt 

K=mv2/2 stored in m Em=Li2/2  
magnetic field energy stored in L 

U=kx2/2 stored in spring (k) Eel=q2/2C 
electric field energy stored in C 
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−
′= + ( )2
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′= +
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Mechanic Electromagnetic 

Quality factor 

0
0 0

2 km k m mQ
T b m b b

ωπ τ ω τ ω
δ

= = = = = = 0
0 0

2 1L L LQ
T RC LC R R

ωπ τ ω τ ω
δ

= = = = = =

Large Q means small b and large km Large Q means small R and large L/C 

All concepts related to damped, forced oscillation/resonance apply 



Mechanic Electromagnetic 

Forced oscillations/resonance 

max( ) cos DU t U tω=max( ) cos DF t F tω=

Driving external force Source of alternative voltage 
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In such RLC circuit, the current intensity i(t) will be: 

( ) ( )max 0

max
0 d max 2

2

sin sin

where: i =
1
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The current will have a maximum for: 0
1 1
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So at resonance when the external voltage 
frequency became equal to the frequency of the 
undamped proper oscillations 

At resonance, the amplitude 
of current oscillations is fully 
related to the resistance value 



Simple harmonic oscillation 

Mechanic Electromagnetic 

b=0 no mechanical dissipation 

Em ↔ Eel 
 

LI2/2 ↔ q2/(2C) 

K ↔ U 
 

mv2 /2 ↔ kx2/2 
Continuous conversion 

Mechanic SHM oscillator 

R=0 no electrical dissipation 

m ↔ L 

k ↔ 1/C 

Electrical oscillator LC 



Pendulum wave,  Kinetic art 

 Use the simple pendulum motion to create a “pendulum wave apparatus”: a device where many 
pendulums of different lengths (and therefore different periods) start swinging at the same time. As 
they move in and out of sync, the pendulums create a sequence of cycling visual wave patterns. 
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